Mechatronic Tank

Mechatronic Tank

We would like to introduce Mechatron, our mechatronic tank. When we designed and built Mechatron we wanted him to be tough looking, industrial, and retro-futuristic, with lots of metal, rivets, and gears. He’s built entirely out of aluminum, brass, and steel, but inside, he’s chock-full of high tech electronics. See pictures and more text below. And be sure to watch the video to see Mechatron in action!

 

Mechatron includes special wheels with rollers slanted at 45 degree angles and driven by dedicated gearboxes, four powerful motors, and a software-controlled drive system that we wrote that operates each of the wheels independently. The result is that he can move in any direction at any time in any orientation. In other words, he can drive forward and backwards or turn like a normal vehicle, but he can also drive perpendicular to the direction he’s facing or at any desired angle. Weighing in at forty five pounds, he is by far our heaviest robot, but he is also our most agile, which makes him tremendous fun to drive.

Mechatron’s gun turret pans 360 degrees, includes 8 range-finding sonars for target detection, a laser, and a high-powered electric automatic weapon that shoots brass or plastic pellets. Ammunition is fed from the base of the robot up through one of the articulated metal tubes attached to the turret (the other tube contains wires). He can fire extremely rapidly while standing still or moving.

Strips of 52 programmable RGB LED lights have been mounted on Mechatron’s underside and within his turret. The turret LEDs indicate the robot’s current mode and whether the weapon system is armed. The LEDs on the underside change color depending on the direction of each of the individual wheels (Blue = Stopped. Green = Forward. Red = Backward), which helps to illuminate how Mechatron’s unique drive system works.

Mechatron is designed to function in a variety of different modes, including both user-controlled Radio Control and/or fully-autonomous. For the RC mode, we built our own controller which matches Mechatron in look-and-feel. The left joystick controls the pan and tilt of the gun turret and includes the firing button on top (which is armed using the missile switch). The right joystick controls the drive system. Forward and Backward motion (Y-axis) moves the robot forward or backward. Twisting the joystick turns the robot in the direction of twist (Z-axis). Moving the joystick left or right (X-axis) causes the robot to strafe left or right while maintaining his current orientation. Combined X-Y-Z joystick motions create unique and agile movements, such as strafing in circles. The robot can move in any direction, while panning and tilting its turret and firing all at the same time.

 

Technical Specifics:

  • Overall Design:   Beatty Robotics
  • Arduino Software: Beatty Robotics
  • Metal armor plates: Beatty Robotics
  • Main Microcontroller: Arduino Mega 2560
  • Microcontroller used for controlling LED lights: Arduino Nano
  • Light Controller Software: Beatty Robotics
  • Wheels: AndyMark (special thanks to Andy Baker, who was great to work with on these)
  • Drive Gears: Modulox (special thanks to Dan Richardson at iR3 Creative Engineering & Andy Baker at AndyMark)
  • Pan-Tilt gears and other parts: RobotZone (special thanks to ServoCity)
  • Pan-Tilt Servos: Hitec Digital
  • Sonars:  (12) Maxbotix MaxSonar Ultrasonic Sensors
  • Turret Sensor Head: Beatty Robotics
  • RGB LED strips:  Adafruit (Go Blinky Belt!)
  • MP3 Sound Board:  Sparkfun MP3 Trigger
  • Servo Controller: Pololu Maestro
  • Voltage Regulators: Pololu & Dimension Engineering
  • High-amp Relays: DFRobot
  • Motor Controllers: (2) Dimension Engineering Sabertooth 2×25
  • Motors: (4) CIM
  • Wireless Communication:  Xbee Radio with Sparkfun Xbee Explorer Regulated board
  • Joy Sticks: (2) 3-axis hall-effect joysticks from CH Products
  • Batteries: (1) 12v 3-cell Lithium-Polymer 20C
  • Aluminum, hardware, fasteners, wire, tools, and much else: McMaster-Carr
  • Wire, electronic components, IC boards, and much else: Sparkfun & RobotShop
Remote Control

Remote Control

We have been hard at work on our latest project called Mechatron. To control our Mechatron robot as well as our Mars Rover, we designed and built our own remote control box. We developed our own communication protocol for transmitting commands from the remote control to the robot. On other projects we used iPhones and Playstation remote controllers, but in this case we wanted to build a large, metal box with lots of retro-switches and joysticks.

Remote Control Box for our Mechatron Robot

Inside wiring for the Mechatron Remote Control

 

Technical Details

  • Microcontroller: Arduino Mega 2560
  • Remote Control Software:  Beatty Robotics
  • Design and Construction: Beatty Robotics
  • Box: Aluminum sheet and metal screws
  • Radio:  xBee Radio module
  • Joysticks: Digikey x-y-z-axis, hall-effect, 1 button joysticks
  • Rotary LED Encoder Ring: Mayhew Labs
  • Battery: 12v LIPO
Notes:
1. Although it wasn’t cheap, the hall-effect 3-axis joystick was critical for controlling the function of Mechatron’s specialized drive system. We originally tried a traditional analog/resistive/potentiometer-style joystick and it did not work well at all. We thought our whole project was going to fail until we realized that not all joysticks are created equal. The joystick based on the “hall-effect” principle worked perfectly for us.
2. You can’t see it in these photos, but this controller can be charged via banana jacks and re-programmed via a USB jack without having to unscrew and remove the case. The same is true for the Mechatron robot itself.
Security Robot

Security Robot

Security V is a small security robot. It’s equipped with the following capabilities:

  • Automatic electric gun (Airsoft pellet gun) with ammunition cage
  • Pan-Tilt Gun Turret
  • Targeting laser
  • FPV Camera
  • (3) Ping sensors for object avoidance
  • LED Light Strips
  • MP3 Sound Player
  • IR Human Detection Sensor
  • Moto Controller
  • Two motors
  • Two treaded drive wheels and two omni wheels
  • Arduino Mega Microcontroller
  • Xbee Radio for remote control
  • Button panel for selecting the mode

We programmed it with five different modes:

1. Roams autonomously around the house, playing R2-D2 like sounds as it explores & avoids obstacles
2. Remote Control
3. Dance Mode (Plays the song Mr. Roboto and dances around)
4. Guard Mode (enables its infrared human detection sensor and plays a police siren if anyone tries to sneak past it)
5. Shoot (shoots the gun)

Security V Security Robot
Security V slider image
Security Robot
Security Robot
Security Robot – Top View
Roam-Bot, A Bot On His Own

Roam-Bot, A Bot On His Own

When I first saw Roam-bot I thought he was pretty cool. He talked (at this time we had no talking robots) and he had a aluminum box that hides all of his wires. He was neat, and could go by himself using ping sonar.

When you first turned him on he says “Ready, roger, roger, find best direction” in a deep voice then turns his head to each side saying the number of inches until an object. He says “_ inches, _inches, _ inches” Then goes the direction in which there is the most amount of inches. Now that’s pretty awesome!

We ran into a problem when we came to the point were we needed a caster. No sizes fit his front. While waiting for different sizes to be delivered, we temporally put on a furniture felt pad on so we could still play with him. It worked great! Still none of the sizes fit, so it became permanent. He now can only go on wood floors, but thats okay because we have lots of it!

Roaming Robot

Roaming Robot – Top View

Roaming Robot – Front View